Software Environment for Investigating Decentralized ATM Concepts By P. K. Menon, L. S. Crawford and T. Lam Optimal Synthesis Inc. 470 San Antonio Road, Suite 200 Palo Alto, CA 94306-4646 (650) 858-8585, www.optisyn.com engineers@optisyn.com Research Supported Under NASA Contract: NAS2-00042 Technical Monitor: Dr. George Meyer Free Flight/DAG-TM Workshop, May 22-25, 2000 NASA Ames Research Center, Moffett Field, CA 94035 #### **Outline** - Motivation - SEAMA* Components and Issues - Control-Theoretic Formalism for ATM Analysis - Case Study: DAG Conflict Resolution - Summary and Future Work *Software Environment for Air-Traffic Management Analysis #### **Need for SEAMA** - Several Airborne Flight Conflict Resolution Algorithms Continue to be Developed: - Optimization, Potential Fields, Rule-Based, Fuzzy Logic, Genetic Search, Neural Networks - These Methods will have to be Integrated with Ground-Based Air Traffic Conflict Resolution System. - Need to Assess Performance and Robustness of Airborne and Air-Ground Integrated System. - Distributed Control System. - Need a Rich and Realistic Environment for Modeling and Modifying Distributed Conflict Resolution Algorithms. ### Software Environment for Air-Traffic Management Analysis (SEAMA) #### **SEAMA** Software Development Issues #### **The Software Environment Must:** - Allow Rapid Coding and Debugging Features. - Match the Complement of Software Tools Currently Being Used by Researchers. - Provide Simple Methods for Data and Algorithm Exchange. - Provide Capabilities for Algorithm Security in Order to Permit Comparative Evaluations. - MATLAB®/Simulink® Software Environment Satisfies these Requirements. #### **Analysis Using Concepts from Control Theory** #### **ATM as a Closed-Loop System (Robust Control):** $$x_{i+1} = x_i + f(i, x_i, u_i, w_i), y_i = g(i, x_i, u_i, w_i), z_i = h(i, x_i, u_i, w_i)$$ $$u_i = K(i, y_i, y_{i-1},)$$ $$f(\cdot) g(\cdot) h(\cdot) K(\cdot) are Complex Computer Programs$$ f(...), g(...), h(...), K(...) are Complex Computer Programs ## Control Theoretic Characterization of the Air Traffic Management System #### **Definitions:** **States** (x): Position and Velocity Vectors of all the Aircraft in the Environment (Knowledge of these Completely Characterizes the Air Traffic Environment) **Controls** (u): Air Traffic Control Advisories to the Aircraft in the Environment Disturbances (w): Wind, Ambient Temperature, Data Drop-out/Noise, Communication Channel Limitations, Subsystem Failures (Computer, Radar, Communication Links), Increase in Traffic Volume,...... Outputs (y): Data Available to Carry Out Air Traffic Management. Performance Measures (z): Variables that Characterize ATM System Efficiency and Safety. ### Desirable Properties of Robust Closed-Loop Systems - A Robust Closed-Loop System Must be: - a) Dissipative (Nonlinear Robust Control Theory, Helton and James 1999) A System is γ -Dissipative if there exist a $\gamma > 0$ and a function $\beta(x_0) \ge 0$ with $\beta(0)=0$, such that $$\frac{1}{2} \sum_{i=0}^{n} |z_{i}|^{2} \leq \gamma^{2} \frac{1}{2} \sum_{i=0}^{n} |w_{i}|^{2} + \beta(x_{0})$$ for all $w \in L_{2,n}$ and for all n i.e., the Nonlinear input-Output Map: $w\mapsto z$ has finite L₂ Gain with a Bias Term Due to the Initial State. In Linear Dynamic Systems, *Dissipativity* is the H^{∞} -Norm of the System Transfer Function z(s)/w(s). b) Stable in the Lyapunov Sense #### **Stability and Robustness** #### **Working Definitions:** Describes the Desirable Temporal Behavior of the Environment. - Stability: Tendency of the System to Move Towards Desirable Operating Conditions After Being Perturbed. - Robustness: Tendency of the System to Maintain Stability Under Disturbances and Variations in System Parameters. - Meaningful only in Terms of the Performance Variables (Output Stability) in Finite Time. #### **Lyapunov Relative Stability Measure** #### **Stability and Distance Measures** Margin Set Distance Several distance measures implemented: - Mean-squared radial separation - Maximum radial separation - Minimum radial separation - Set distance (Hausdorff metric): $$h(A,B) = \max(d(A,B), d(B,A))$$, where $$d(A,B) = \max\{d(x,B): x \text{ in } A\}, \ d(x,B) = \min\{d(x,y): y \text{ in } B\}$$ • Volumetric free space (margin only): 1 - volume (area) enclosed by curve or surface / volume (area) enclosed by margin boundaries #### **Air Traffic Performance Parameters** - aircraft count, change in aircraft count - C_{mhd} and C_{mvd} (inverse mean weighted horizontal and vertical separation)* - C_{vg1} , C_{vg2} , and C_{vg3} (speed standard deviation, contrast ratio, and mean)* - C_{mih} and C_{miv} (inverse average minimum horizontal and vertical separation)* - C_{mih1} and C_{miv1} (inverse minimum horizontal and vertical separation)* - C_{tga1} (# pairs with time to go <5 min)* - C_{tga2} and C_{tga3} (average and minimum time-to-go)* - Average curvature - Maximum curvature - fractal dimension ("meta" performance measure) ^{*}Implemented using code from Dr. Gano Chatterji, based on measures in Chatterji & Sridhar, "Measures of Airspace Complexity" #### **SEAMA: Software Demo** Two techniques from *FACET* implemented as Simulink blocks: CDR1: Geometric Optimization (C implementation) CDR2: Potential Field (MATLAB function implementation) - Airborne CDR2: same as *FACET* implementation - surveillance zone of 100nm - separation red zone of 5.1nm - Ground-based CDR2: significantly more conservative - surveillance zone of 150nm - separation red zone of 10.1nm #### ATM Command Integration: Maximum Change MAX(Ground Command, Airborne Command) Weighted Sum SUM(60% ground, 40% airborne) CDR2 Technique (Potential Field): With Weighted Sum Ground/Air Command Blending Dissipativity Measures: (w = count w.r.t. moving average): | Blending
Scheme | Dissipativity 1 (min sep) | Dissipativity 2 (min t-to-go) | Dissipativity 3 (speed CR) | Dissipativity 4 (max curv) | |--------------------|---------------------------|-------------------------------|----------------------------|----------------------------| | Air Only | 3.0224 | 0.0920 | 6.2357 | 2.8240 | | Ground Only | 2.0378 | 0.0920 | 6.2357 | 2.8240 | | Sum | 2.5711 | 0.0920 | 6.2357 | 2.8240 | Note that in this example the ground conflict resolution scheme uses a larger safety zone (10.1 nm) around the aircraft than does the airborne scheme. CDR2 Technique (Potential Field): With Weighted Sum Ground/Air Command Blending #### **Stability Margins:** | Blending
Scheme | Performance
Measures | Margin 1
(max radial) | Margin 2 (volumetric free space) | |--------------------|-------------------------|--------------------------|----------------------------------| | Scheme | Measures | (max radiai) | (volumetric free space) | | Air Only | min sep & | 0.1452 | 0.7072 | | Ground Only | min t-to-go | 0.1921 | 0.9252 | | Sum | mm t to go | 0.1527 | 0.8847 | | Air Only | speed CR & | 3.9573 | 0.9250 | | Ground Only | max curv | 3.7064 | 0.9108 | | Sum | max carv | 3.8301 | 0.9269 | | Ground Only | min sep & min t-to- | 4.8481 | 0.9976 | | Sum | go & speed CR | 4.8462 | 0.9973 | #### Stability Bounding Surfaces, CDR2 with Weighted Blending 0.3 0.25 0.2 0.15 0.05 0. Min sep and min t-to-go Min sep, min t-to-go, and speed CR #### **Presentation Summary** - Software Environment for Air-Traffic Management Analysis (SEAMA): - Distributed Air-Ground Air Traffic Conflict Resolution. - Notions of Stability Margins, Dissipativity and other Robustness Measures. - Case Study: Integrated Air-Ground Conflict Resolution - Next Step: **Numerical Implementation of Concepts from Decentralized Control Theory** - Structural Controllability and Observability - Connective Stabilizability and Stability (Graph Theoretic Methods) - Connective Robustness Measures - Distributed-Interconnected Observer Theory